Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday

# THERMAL TRANSFORMATIONS IN PHOSPHORITES

R. Knubovets<sup>1</sup>, Y. Nathan<sup>2</sup>, S. Shoval<sup>1</sup> and J. Rabinowitz<sup>3</sup>

<sup>1</sup>The Open University of Israel, 16 Klausner St., Tel-Aviv 61392 <sup>2</sup>Geological Survey of Israel, Jerusalem 95501 <sup>3</sup>Rotem-Amfert-Negev, Ashdod, 77051, Israel

## Abstract

The thermal transformations in phosphorites during flash calcination were investigated by FT-IR spectroscopy, X-ray diffraction and chemical analyses. During flash calcination changes occur, both in the composition of the phosphorite and in the crystallochemistry of the fluor-carbonate-apatite (francolite). The former changes include: decomposition of a great part of the calcite in the rock and oxidation of organic matter. The latter changes include: partial removal of the structural carbonate; partial relocation of the remaining carbonate ions in the apatite structure; a new arrangement of hydroxyl groups and fluorine on the hexagonal axis; partial condensation of the orthophosphate groups and increase of crystallite sizes. Isomorphous substitution of  $PO_4^{-3}$  in apatite by  $SO_4^{-2}$  and  $SiO_4^{-4}$  may take place.

Keywords: apatite, calcination, crystallinity, FT-IR, phosphorite, XRD

## Introduction

Calcination is an efficient method of beneficiation of phosphorites with a high carbonate and organic matter content [1, 2]. During flash calcination the samples are heated at a high temperature for a very short time (a few seconds). In some cases calcination causes a worsening of phosphorite properties for sulfuric acid production. The reason may be connected with the differences of the real structure of apatites [1]. Comparison of analyses of products of thermal decomposition of amorphous calcium phosphates, synthetic amorphous calcium phosphates (containing carbonate) from aqueous systems, and biological apatites showed differences in the results [3]. McClellan and Van Kawenbergh, Mathews and Nathan, and Perdikatsis [4–6] have investigated the mineralogical effects of thermal treatment of sedimentary apatites. They showed that the main change in the apatite structure is the expulsion of the structural CO<sub>2</sub>, increasing the a axis and crystallite size. This transformation is accompanied by the formation of free CaO.

0368–4466/97/ \$ 5.00 © 1997 Akadémiai Kiadó, Budapest

John Wiley & Sons Limited Chichester The aim of the present work is to analyze the thermal transformations in the Negev phosphorites during industry flash calcination.

## Samples and methods

### Samples

Phosphorite samples from the Nahal Zin deposit, Negev, Israel, were supplied by the Rotem-Amfert-Negev Company and the Geological Survey of Israel. The samples included a suite of phosphorites from the Nahal Zin deposit, before and after flash calcination at 870°C (residence time a few seconds). The whole samples and their fractions were examined. Some samples after flash calcination at 800 and 950°C were also examined. For comparison, samples were subjected to thermal treatment in the laboratory at temperatures from 600 to 900°C for 1 h. Mixtures of phosphorites with gypsum or with quartz, 10:1 w/w, after thermal treatment in the laboratory were also examined.

### Methods

- IR spectra were recorded with a Nicolet FT-IR spectrometer. Disks were prepared using 1 or 5 mg of the sample and 150 mg of KBr. The disks were run after preparation and after drying for 24 h at 110 and 350°C. The higher temperature is needed to remove stable water bands which mask the OH stretching band. Immediately after heating, the dried disks were re-pressed (without re-grinding) in order to improve the resolution of the spectra.

– X-ray powder diffractograms were obtained with a Philips PW-1820/00 diffractometer (1720 based) using CuK<sub> $\alpha$ </sub> radiation 35 kV – 40 mA, and a curved graphite monochromator with a 1° divergent slit and an 0.2° receiving slit. A semi-quantitative estimate of the structural carbonate concentration in the apatite was also carried out by XRD [4, 7].

- Chemical analyses were carried out by Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), using a Jobin-Yvon JY48 spectrometer.

### Results

## Changes in phosphorite

The main components of the Negev phosphorites are fluor-carbonate-apatite (francolite) and calcite [8, 9]. Minor amounts of clay minerals, quartz and opal C–T are commonly present. Most of the phosphorites contain organic matter rich in sulfur. After flash calcination at 870°C, about half of the calcite in the phosphorite is decarbonated and calcium oxide forms. The  $P_2O_5$  content in the calcined rock increased by a little more than 10% (Table 1). The amount of or-

ganic matter decreases significantly and its composition changes, the quantity of methylene groups increases. Trace element concentrations also changed. The contents of Cd, Cr, Mo, Ni, V and Zn decrease while the contents of Ba, Eu, La, Sr and Y increases (Table 2). The changes after the flash calcination are slightly different in the various size fractions (Table 3). This may result from the differences in the actual temperatures of particles with different sizes: the tempera-

| -       | -                   |         |      |                               |                   |                    |      |                                 |      |  |
|---------|---------------------|---------|------|-------------------------------|-------------------|--------------------|------|---------------------------------|------|--|
|         | Size of crystallite |         | CaO  | P <sub>2</sub> O <sub>5</sub> | CO <sub>2</sub> * | CO <sub>2</sub> ** | F    | F/P <sub>2</sub> O <sub>5</sub> | ***  |  |
| Samples | along a             | along c | %    | %                             | %                 | %                  | %    |                                 |      |  |
|         | A°                  | A°      |      |                               |                   |                    |      |                                 |      |  |
| Feed    | 280                 | 550     | 51.4 | 30.5                          | 8.3               | 4.1                | 2.99 | 0.098                           | 29.9 |  |
| Product | 750                 | 1530    | 55.1 | 33.6                          | 3.7               | 1.5                | 3.02 | 0.090                           | 13.7 |  |
| Feed    | 270                 | 660     | 52.4 | 30.1                          | 7.5               | 4.2                | 2.71 | 0.090                           |      |  |
| Product | 790                 | 1480    | 55.5 | 33.4                          | 3.0               | 1.5                | 2.86 | 0.086                           |      |  |
| Feed    | 290                 | 540     | 51.4 | 29.1                          | 7.9               | 3.7                | 2.97 | 0.102                           | 28.0 |  |
| Product | 830                 | 1090    | 55.0 | 32.6                          | 3.1               | 1.8                | 3.08 | 0.094                           | 13.2 |  |
| Feed    | 370                 | 640     | 50.9 | 27.8                          | 7.5               | 3.5                | 2.71 | 0.097                           | 25.6 |  |
| Product | 840                 | 1250    | 54.7 | 32.6                          | 3.1               | 1.4                | 2.83 | 0.087                           | 13.1 |  |
| Feed    | 310                 | 550     | 52.5 | 29.8                          | 8.6               | 3.8                | 2.70 | 0.091                           | 25.8 |  |
| Product | 820                 | 1240    | 54.6 | 31.7                          | 3.1               | 1.6                | 2.71 | 0.085                           | 12.3 |  |

 Table 1 Crystallite size (XRD), structural CO<sub>2</sub> (XRD), major element composition and solubility of phosphorite feed and product of flash calcination

\*=total CO<sub>2</sub>; \*\*=structural CO<sub>2</sub>; \*\*\*=solubility in diluted citric acid

Table 2 Trace element composition of phosphorite feed and product of flash calcination

| Samples - | Composition/ppm |    |     |     |    |    |    |      |     |    |     |
|-----------|-----------------|----|-----|-----|----|----|----|------|-----|----|-----|
|           | Ba              | Cd | Cr  | Eu  | La | Mo | Ni | Sr   | V   | Y  | Zn  |
| Feed      | 749             | 29 | 117 | 0.3 | 16 | 23 | 46 | 2800 | 164 | 54 | 474 |
| Product   | 1056            | 17 | 74  | 0.5 | 18 | 16 | 35 | 3076 | 136 | 60 | 408 |
| Feed      | 430             | 31 | 119 | 0.2 | 17 | 38 | 47 | 2660 | 161 | 55 | 453 |
| Product   | 736             | 18 | 70  | 0.4 | 18 | 25 | 32 | 2997 | 131 | 60 | 404 |
| Feed      | 800             | 30 | 108 | 0.4 | 17 | 35 | 47 | 2748 | 159 | 57 | 471 |
| Product   | 691             | 18 | 69  | 0.5 | 19 | 27 | 42 | 2952 | 127 | 63 | 411 |
| Feed      | 568             | 31 | 122 | 0.3 | 16 | 26 | 57 | 2592 | 168 | 53 | 487 |
| Product   | 726             | 20 | 73  | 0.5 | 18 | 29 | 42 | 2970 | 138 | 60 | 422 |
| Feed      | 581             | 32 | 105 | 0.3 | 16 | 35 | 54 | 2562 | 154 | 54 | 473 |
| Product   | 764             | 19 | 74  | 0.1 | 18 | 27 | 42 | 2898 | 122 | 58 | 430 |

| Samples | Fractions    | Mass         | P <sub>2</sub> O <sub>5</sub> / | CO <sub>2</sub> / |
|---------|--------------|--------------|---------------------------------|-------------------|
|         | (mesh)       | (% of total) | %                               |                   |
| Feed    | Whole sample |              | 30.2                            | 8.10              |
| Product |              |              | 33.9                            | 3.25              |
| Feed    | +10          | 2.24         | 24.3                            | 11.29             |
| Product |              | 0.07         | 23.7                            | 8.67              |
| Feed    | +20          | 9.16         | 27.4                            | 9.45              |
| Product |              | 3.98         | 30.8                            | 6.08              |
| Feed    | +60          | 40.59        | 31.9                            | 6.40              |
| Product |              | 32.92        | 35.0                            | 3.37              |
| Feed    | +100         | 30.15        | 31.9                            | 6.62              |
| Product |              | 33.58        | 35.1                            | 2.83              |
| Feed    | +150         | 9.86         | 27.9                            | 10.86             |
| Product |              | 15.25        | 32.7                            | 2.90              |
| Feed    | +200         | 4.50         | 24.9                            | 14.39             |
| Product |              | 9.14         | 30.9                            | 2.99              |
| Feed    | -200         | 3.50         | 22.1                            | 16.60             |
| Product |              | 5.06         | 29.5                            | 3.24              |

| <b>Table 3</b> $P_2O_5$ and total CC | 2 content in different | grain-sized fractions | separated from phosph | ıorite |
|--------------------------------------|------------------------|-----------------------|-----------------------|--------|
| feed and product                     | of flash calcinatiion  |                       |                       |        |

tures within the particles in the coarse fractions are lower than those of the particles in the fine fractions.

#### Changes in the apatite structure

Table 1 showed that after flash calcination at 870°C, the amount of structural carbonate is drastically reduced, more than 50%. The  $F/P_2O_5$  ratio is slightly reduced. The crystallinity of the apatites increases. The average size of an apatite crystallite along the a direction increases from 300 to 800 Å and along the *c* direction from 600 to 1300 Å. The structural changes of the apatites during the flash calcination caused changes in the properties of calcined phosphorite; the solubility of the concentrates in dilute citric acid decreases by 50%.

The changes in the apatite structure after calcination are slightly different in the various fractions. A decrease in the intensity of the  $v_3$  vibration of the carbonate group in the IR spectra and changes of the relative intensities of the doublet components of this vibration at 1455 and 1429 cm<sup>-1</sup> are more pronounced in the spectra of fine fractions of the calcined product (Fig. 1).



Fig. 1 The  $v_3$  vibrations of carbonate groups in the IR spectra of +100 (a), +200 (c) mesh fractions of phosphorite feed and +100 (b), +200 (d) mesh fractions of flash calcination product

Although the samples contain francolite, after heating at  $350^{\circ}$ C a weak OH stretching band appears in the IR spectra at  $3545 \text{ cm}^{-1}$ . After the flash calcination the frequency of the OH stretching vibration decreased to  $3536 \text{ cm}^{-1}$  (Fig. 2), indicating changes in their arrangement. A sharp, strong peak at  $3643 \text{ cm}^{-1}$  is due to the OH stretching vibrations of calcium hydroxyde [10], which is formed by the reaction of CaO with atmospheric water vapor [11]. Vibration bands at 745 cm<sup>-1</sup> of the P–O–P bridge bonds [1] are observed with dif-



**Fig. 2** The OH stretching vibrations of apatite and calcium hydroxyde in the IR spectra of +60 (a), +100 (c) mesh fractions of phosphorite feed and +60 (b), +100 (d) mesh fractions of flash calcination product

ferent intensities in IR spectra of all the fractions of the calcinated phosphorites, e.g. the band in the spectrum of the +10 mesh is much weaker than that of the average sample (Fig. 3).

Small bands were observed at 530, 930, 1150 cm<sup>-1</sup> in the IR spectra of calcined apatite after flash calcination of phosphorites at 950°C (Fig. 4) and also in the spectra of the fine fractions after flash calcination at 870°C. Similar bands were observed at a lower temperature after prolonged laboratory calcination of phosphorites and their mixtures with gypsum and quartz, indicating isomor-



**Fig. 3** The P-O-P vibration in the IR spectra of whole sample (a), +10 mesh fraction (c) of phosphorite feed and whole sample (b), +10 mesh fraction (d) of flash calcination product

phous substitution of phosphorus by sulfur and silicon. The entrance of sulfur in the apatite of the calcined product increases with the amount of organic matter in the original phosphorite.

## Discussion

## Changes in the structural carbonate

The carbonate ions is partly ousted from the apatite structure during the flash calcination at 870°C, as observed by the decreasing of intensities of the doublet



**Fig. 4** IR spectra of organic-rich phosphorite (a), mixtures of phosphorite with gypsum (b) or with quartz (c) after laboratory calcination for 1 h at 900°C, compared to product of flash calcination at 950°C (d)

of the structural carbonate at 1455 and 1429 cm<sup>-1</sup> in the IR spectra of the calcinated phosphorites (Fig. 1). The relative intensities of these bands are also changed after the flash calcination. The  $v_3$  doublet of the structural carbonate bands at 1453 and 1429 cm<sup>-1</sup> in francolite is due to  $CO_3^{-2}$  ions replaced  $PO_4^{-3}$ ions (B-type substitution), whereas the location of those bands at 1548, and 1457 cm<sup>-1</sup> in carbonate-apatites are due to  $CO_3^{-2}$  ions replaced OH<sup>-</sup> ions on the hexagonal axis (A-type substitution) [3]. Increase of the intensity of the 1455 cm<sup>-1</sup> band relative to that at 1429 cm<sup>-1</sup> indicates that some of the remaining structural carbonate relocates from the orthophosphate site to the hexagonal axis and interstitial positions. The crystallinity of the apatites and the sizes of their crystallites increase (Table 1). Increase of the a axis and crystallite size during ousting of structural carbonate were reported by Matthews and Nathan [4].

### Changes in the structural hydroxyls

Structural hydroxyl groups were found in the IR spectra of all the francolites. The location of the band at 3545 cm<sup>-1</sup> (Fig. 2) indicates a presence of OH...F bond [1, 3]. The decrease of the frequency of the stretching OH vibration to  $3536 \text{ cm}^{-1}$  in the IR spectra of the calcinated phosphorites indicates a new arrangement of hydroxyl groups and fluorine on the hexagonal axis. According to Elliott [3], when few OH<sup>-</sup> ions are present in fluor-apatite, the IR band appears at  $3538 \text{ cm}^{-1}$ , which must correspond to stronger hydrogen bond. Baumer *et al.* [12] discuss the ways of arranging OH and F in a linear array. Their main criteria are the intensity and position of the two main OH stretching vibrations of hydro-fluor-apatites: the band at  $3573 \text{ cm}^{-1}$  which characterizes OH–OH–OH chains and the band between  $3550 \text{ and } 3535 \text{ cm}^{-1}$  which is caused by OH ions weakly hydrogen-bonded to F ions. The lower the position of this band the more F neighbours to each OH. At 600°C, the temperature at which they synthesized the apatites, the distribution of OH and F is close to statistical.

At the higher temperature used in the present work for flash calcination and laboratory calcination, there is a new arrangement of hydroxyl groups on the hexagonal axis of the apatite structure after heating. It was analyzed for low OH concentrations; whether this remains correct for higher OH concentrations has to be proved.

### Changes in the orthophosphate groups

Partial condensation to pyrophosphate takes place during flash calcination at 870°C. It is observed by the appearance of vibration bands of the P–O–P bridge bonds at 745 cm<sup>-1</sup> [1] in the IR spectra of the calcinated phosphorites (Fig. 3). Isomorphous substitution of phosphorus by sulfur and silicon were found after flash calcination of phosphorites at 950°C and also in the spectra of the fine fractions after flash calcination at 870°C. These substitutions were observed by the appearance of bands at 530, 930, 1150 cm<sup>-1</sup> in the IR spectra of calcined apatite (Fig. 4), when no other phases are present (according to XRD). Flash calcination of organic-rich phosphorites results in more pronounced substitution. The organic matter in the Negev phosphorite is rich in sulfur (10% by weight of the organic matter [8]). Thermal oxidation and decomposition of organic matter occurs, S is liberated, mainly as SO<sub>2</sub>, some of it enters the apatite structure as SO<sub>4</sub>. Organic S appears to be far more active than inorganic sulfate. Substitution of PO<sub>4</sub><sup>-3</sup> by SiO<sub>4</sub><sup>-4</sup> takes place when silica minerals (opal C–T, clays or even quartz) are present in the phosphorite.

Similar isomorphous substitutions were found in mixtures of phosphorites with gypsum or with quartz after laboratory calcination for 1 h at 700–900°C (Fig. 4). The  $SO_4^{-2}$  and  $SiO_4^{-4}$  enter the apatite structure in the vacant orthophosphate positions produced by the ousting of the carbonate, at 800°C and sometimes already at 700°C. It appears that in general the substitution is coupled  $(2PO_4^{-3} \rightarrow SO_4^{-2} + SiO_4^{-4})$ . Baumer *et al.* [13] argue for the presence of a coupled substitution and assign the band at 1150 cm<sup>-1</sup> to SO<sub>4</sub> and the bands 530 and 930 cm<sup>-1</sup> to SiO<sub>4</sub>.

The entering of sulfur and silicon in the apatite structure in the calcination process causes a worsening of phosphorite properties for sulfuric acid production [1] and is therefore of great importance. Higher temperatures and longer residence times favor such substitutions. Flash calcination reduces the residence times at the high temperature and is preferable. In this calcination the entering sulfur and silicon in the apatite structure practically takes place only at 950°C. This shows that use of flash calcination at 950°C is not desirable in spite of almost complete ousting of structural carbonate at this temperature.

### Conclusions

During the flash calcination changes occur, both in the composition of the phosphorite and in the crystallochemistry of the apatite. The carbonate ions were not only ousted from the apatite structure, some of the remaining relocated from the orthophosphate site (b site) to the hexagonal axis (a site) and interstitial positions. A new arrangement of hydroxyl groups and fluorine on the hexagonal axis and partial condensation of the orthophosphate groups are found. Isomorphous substitution of  $PO_4^{-3}$  by  $SO_4^{-2}$  and  $SiO_4^{-4}$  may take place when organic matter with a high S content and silica minerals are present.

\* \* \*

The financial support from Rotem-Amfert-Negev Phosphate Co. is gratefully acknowledged. We thank Dr. B. Pregerson of the Rotem-Amfert-Negev for supplying samples.

## References

- 1 R. Knubovets, Rev. Chem. Engineering, 9 (1993) 161.
- 2 M. Veiderma and R. Knubovets, Thermal transformations in phosphorites and their use for the beneficiation of phosphate rock. Proc. 2nd Intern. Congr. on Phosphorus compounds, Boston, USA, 1980, p. 345.
- 3 J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam-London-New York-Tokyo 1994, p. 389.
- 4 A. Matthews and Y. Nathan, Amer. Miner., 62 (1977) 565.
- 5 G. H. McClellan and S. J. Van Kauwenbergh, Phosphorite Research and Development. Geological Soc. Spec. Publ. A. J. G. Notholt and J. Jarvis, (Eds). London, 52, 1990 23.
- 6 B. Perdikatsis, Mater. Sci. Forum, 79-82 (1991) 809.
- 7 R. A. Gulbrandsen, U. S. Geol. Surv. Proc. Pap. 700B (1970) 9.

- 8 Y. Nathan, Y. Shiloni, R. Roded, I. Gal and Y. Deutsch, "The Geochemistry of the Northern and Central Negev Phosphorites (Southern Israel)", Geological Surv. Israel, Bull., 73, 1979, p. 44.
- 9 Y. Nathan and Y. Shiloni, The phosphate fields of the Negev. (Southern Israel), A. J. G. Notholt, R. P. Sheldon and D. F. Davidson, (Eds). Phosphate deposits of the world, Vol. 2, Phosphate Rock Resources, Cambridge University Press 1992, p. 352.
- 10 O. Oehler and Hs. H. Gnthard, J. Chem. Phys., 48 (1969) 2036.
- 11 S. Shoval, M. Gaft, P. Beck and Y. Kirsh, J. Termal Anal., 40 (1993) 263.
- 12 A. Baumer, M. Ganteaume and F. E. Klee, Bull. Miner., 108 (1985) 145.
- 13 A. Baumer, R. Caruba and M. Gantaume, Euro. J. Mineral., 2 (1990) 297.